Content

About Thomas A. Little Consulting ________________________________
Curriculum Guide and Courses ________________________________
Detailed Course Outlines:
 General Analytical and Data Analysis Courses (Quality by Design)
 Introduction QbD, VOC and Critical Quality Attributes ___________
 Statistical Methods and Data Analysis ___________________________
 Design of Experiments ___
 Mixture Design of Experiments _________________________________
 Robust Optimization, Design Space and Tolerance Design _______
 Assay Development and Method Validation ________________________
 Statistical Methods for Process Validation ______________________
 Measurement Systems Analysis ________________________________
 Reliability Analysis __
 Stability Analysis __
 Nonlinear Modeling __
 Process Control Design using SPC/PAT __________________________
 Nonlinear Modeling and Dose Response __________________________
Quality Management
 Quality Risk Management and FMEA _____________________________
 Root Cause Analysis and CAPA _________________________________
Curriculum Summary Table ________________________________
About Thomas A. Little Consulting

Thomas A. Little Consulting (TLC) is an internationally recognized scientific and engineering consulting firm with a proven record for achieving results. TLC has an extensive ICH and QbD curriculum SAS/JMP based for method, product and process development, data analysis, characterization, optimization and control. TLC is a strategic partner of SAS/JMP.

TLC offers specific courses in analytics, data analysis, design of experiments, performance modeling, statistical process control, assay development and method validation, measurement systems analysis, mixture design of experiments, quality risk management and failure modes and effects analysis. These courses are used by a variety of fortune 500 companies to train their analysts, scientists and engineers. TLC has extensive experience in the biotechnology, pharmaceutical and medical device industries and has trained over 60,000 scientists, engineers and business professionals globally.

In addition to training TLC works actively with the drug development team to assure product development and submission study design, data analysis, risk assessments, design of experiments, assay development and validations all meet the high standards of regulatory review and use best in class approaches to product development and report generation.

Thomas A. Little has consultants located in the United States and globally and offers training in English and Mandarin. www.QualitybyDesignConsulting.com

Recommended Software Tools

JMP versions 10.2 and 11.0 are world-class analytical engines for general data visualization and analysis, problem solving and design of experiments. **JMP** a business unit of SAS is a strategic business partner of TLC and a preferred solution for statistical and analytical methods. www.jmp.com
Quality by Design Curriculum

The following are recommendations for some of the most commonly used courses in industry and directly support FDA regulations and key initiatives such as PAT and Quality by Design.

<table>
<thead>
<tr>
<th>Days</th>
<th>QbD/DFLSS Practitioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Quality by Design</td>
</tr>
<tr>
<td>3</td>
<td>Statistical Methods and Data Analysis</td>
</tr>
<tr>
<td>2</td>
<td>Quality Risk Management and FMEA</td>
</tr>
<tr>
<td>2</td>
<td>Root Cause Analysis and CAPA</td>
</tr>
<tr>
<td>2</td>
<td>Process Mapping</td>
</tr>
<tr>
<td>2</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>1</td>
<td>Mixture DOE</td>
</tr>
<tr>
<td>2</td>
<td>Robust Optimization Design Space and Tolerance Design</td>
</tr>
<tr>
<td>1</td>
<td>Statistical Methods for Process Validation</td>
</tr>
<tr>
<td>2</td>
<td>Assay Development and Method Validation</td>
</tr>
<tr>
<td>1</td>
<td>Stability Analysis</td>
</tr>
<tr>
<td>2</td>
<td>Process Control Design using SPC/PAT</td>
</tr>
<tr>
<td>1</td>
<td>Nonlinear Modeling (Relative Potency)</td>
</tr>
<tr>
<td>1</td>
<td>Introduction to JMP Scripting</td>
</tr>
</tbody>
</table>
Introduction to QbD and Critical Quality Attributes

IQbD

Course Description
This course is specifically designed to meet the analytical and business needs of those individuals working within FDA regulated industries. Foundations of QbD are discussed; methods for generation of CQA's are presented. The course requires 8 hours of instruction.

Attendees
This course is required for all managers, directors, scientists, business professionals and engineers who actively work on all aspects of drug product and drug substance development and manufacturing.

Prerequisites
There are no prerequisites for this course.

Course Objectives
1. Understand what is QbD
2. Define FDA/EU expectations
3. Discuss ICH development guidelines for QbD
4. Understand the QbD development framework
5. Apply line of site from clinical to release
6. Impact of QbD on drug development and submission

Detailed Course Outline
Section I Introduction to Quality by Design
- FDA and EU guidance on QbD
- Purpose and opportunity
- QbD benefits and impact on FDA submissions
- Systematic product development
- 10 principles of QbD
- QbD examples

Section II Critical Quality Attribute Generation
- CQA's definition in product development
- CQA's flow down and validation
SMDA
Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Areas of focus are: JMP basics, analysis of data for basic engineering and scientific applications including statistics, distribution analysis, capability assessment, variation analysis, comparison tests, sample size selection, hypothesis testing, confidence intervals and multiple factor modeling. The course requires 24 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
There are no prerequisites for this course.

Course Objectives
7. Use data to solve engineering and scientific problems.
8. Understand the ideas associated with sampling and data collection.
9. Demonstrate the ability to evaluate distributions.
10. Select appropriate sample sizes for performance evaluation.
11. Conduct comparative tests using data.
12. Use regression techniques in order to analyze data and make process/product improvements.
13. Select appropriate analysis technique based on type of data.
14. Apply JMP to data analysis problems.

Detailed Course Outline
Section I Introduction to JMP
Table commands
Column commands
Row commands
Subset commands
Saving Scripts, Journals and Projects

Section II Statistics Foundations & Distribution Analysis
Measures of center and spread
Standard error and central limit theorem
Normal distribution
t distribution and confidence intervals
Test for normality
Individuals and tolerance intervals (normal)
Process capability (normal)
Nonnormal distribution fitting and process capability

Section III **Nominal X, Continuous Y**
Contour plots, Components of Variance, REML and POV
Sample size for the mean and standard deviation
t test – one sample
t test – two sample
Test for differences in variances
t test – paired
One-way ANOVA and F test
N-way ANOVA
Nonparametric data analysis (optional)

Section IV **Continuous X, Continuous Y**
Simple linear regression, correlation
Multiple regression
ANCOVA

Section V **Nominal X, Nominal Y**
Mean and sigma for proportion defective
Sample size and statistical tests for proportion defective
Mean and sigma for defect per unit
Chi-square test for defects and proportion defective
Pareto graphs and cross tabs analysis

Section VI **Continuous X, Nominal Y and Partition**
Logistic regression
Nominal logistic regression (optional)
Recursive partitioning
DOE

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. The course covers both basic and advanced concepts for the design and analysis of experiments. The course requires 16 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
Engineering statistics and data analysis is recommended.

Course Objectives
1. Select factors and responses for experiments.
2. Design experiments appropriate for the information of interest.
3. Use and apply the structures of orthogonal arrays for product and process development and problem solving.
4. Ensure the experimental design is efficient.
5. Use regression techniques in order to analyze the results and make process/product improvements.
6. Use JMP software to design and analyze experiments.

Detailed Course Outline
Section I Introduction to DOE
Section II Experimental Preparation
Section III Full Factorial Designs
Section IV Screening Designs
 Augment design
Section V Custom Designs
 Generating custom designs
 Evaluating custom designs
 Analysis of custom designs
 Simulation for full distribution modeling
 Strategies to minimize experimental size
 Adding covariate and uncontrolled factors
 Life or repeated measures experiments
Disallowed combinations (nested DOEs)
Split Plot designs
Adding dummy variables
Blocking designs
Mixtures in custom designs
Setting constraints in a DOE

Section VI Response Surface Designs
Section VII Special Topics In DOE (optional)
Supersaturated designs
Strip plot designs
MixDOE

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Course covers all aspects of mixture design including pre-DOE, simplex lattice, centroid, screening and custom mixture designs. The course requires 8 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
ESDA and DOE are suggested courses prior to MixDOE.

Course Objectives
1. Apply the principles of robust design to Mixture Experiments.
2. Design mixture experiments appropriate for the information of interest.
3. Use and apply the structures of simplex and optimal designs for product and process development and problem solving.
4. Ensure the mixture design is efficient.
5. Use regression techniques in order to analyze the results and make process/product improvements.
6. Use JMP software to design and analyze experiments.

Detailed Course Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction and Two Factor Mixture Designs</td>
</tr>
<tr>
<td></td>
<td>Experimental preparation and pre-DOE</td>
</tr>
<tr>
<td></td>
<td>Two Factor Mixture Designs</td>
</tr>
<tr>
<td>II</td>
<td>Simplex Lattice Designs</td>
</tr>
<tr>
<td>III</td>
<td>Simplex Centroid and ABCD Screening Designs</td>
</tr>
<tr>
<td></td>
<td>Simplex Centroid</td>
</tr>
<tr>
<td></td>
<td>ABCD Screening Designs</td>
</tr>
<tr>
<td>IV</td>
<td>Extreme Vertices Designs</td>
</tr>
<tr>
<td>V</td>
<td>Optimal Designs</td>
</tr>
<tr>
<td>VI</td>
<td>Custom Design</td>
</tr>
</tbody>
</table>
Robust Optimization, Design Space and Tolerance Design

ROTD
Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Robust optimization and tolerance design presents the methods and practices associated with designing and optimizing products and processes and to discusses tolerance design methods to protect product quality and clinical benefits. The course requires 16 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
ESDA and DOE are recommended course prior to taking ROTD.

Course Objectives
1. Learn and apply the principles of robust product design.
2. Design experiments appropriate for the information of interest.
3. Use and apply the structures of orthogonal arrays for product and process development and problem solving.
4. Ensure the experimental design is efficient.
5. Use regression techniques in order to analyze the results and make process/product improvements.
6. Optimize the response at its most robust condition.
7. Tolerance the factors and responses.
8. Use JMP software to design and analyze experiments.

Detailed Course Outline
Section I Distribution and tolerance design foundations
 System, parameter and tolerance design
 Tolerance design methods

Section II DOE review and robust design principles
 Eight robust design principles
Section III DOE using custom designs
Custom designs
Strategies to minimize experimental size
Adding covariate and uncontrolled factors
Special topics for custom designs (optional)
 Blocking designs
 Setting constraints in the design

Section IV Robust optimization methods
Tighten the tolerance of X
Design to the flats
Use interactions to tune out sensitivities
Use parameter combinations

Section V Tolerance design and margin analysis
Tolerance design procedure
Tolerance stack up analysis
Assay Development and Method Validation

Assay Development and Method Validation
Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. This course is designed for those individuals directly working on assay development, test validation, variation assessment and measurement systems analysis (MSA). It is assumed they come from a variety of backgrounds and disciplines and will be working on a variety of projects. Presentation of the course material is designed for sixteen hours of instruction.

Attendees
This course is required for all employees who actively work on any aspect of assay, measurement, product and process development where the goal is to improve product and process measurement performance.

Prerequisites
DOE is a recommended course prior to taking AD-MSA.

Course Objectives
1. Design experiments for assay characterization.
2. Design experiments for nonlinear modeling
3. Design experiments for variation reduction
4. Evaluate measurement errors and isolate sources of variation
5. Determine methods to correct systematic errors in instruments and assay methods
6. Determine inspection and test related errors

Detailed Course Outline
Section I Statistical Foundations and Variation Assessment
Introduction to assay and test development, validation and MSA
Review of basic statistics
Variation analysis methods

Section II DOEs for Assay Development and Evaluation
Assay characterization experiments
DOE for variation reduction
DOE for robustness
DOE for nonlinear characterization

Section III Chemical and Biological Assay Evaluation and Validation
Accuracy
Precision (Repeatability, Intermediate Precision, Reproducibility)
Detection limit
Quantitation limit
Suitability
Linearity
Range
Specificity
Robustness

Section IV MSA for Variables Data (Physical and Destructive)
MSA terms and definitions
GR&R procedure and analysis
Secondary breakdown of repeatability
Discrimination ratio
Bias
Linearity
MSA for destructive testing
MSA studies using fluids
Calibration, correlation and compensation

Section V MSA for Attributes Data (Visual and Mechanical)
Operational definitions
Effectiveness
Probability of a false alarm
Probability of a miss
Bias
Escape rate
Statistical tests for attributes

Section VI Multifactor MSA Studies
Using POV for multiple factor gage studies
Statistical Methods for Process Validation

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. A key component of pharmaceutical, medical device and biotechnology product development is to perform process validation and qualification studies. The basic concepts, requirements and statistical methods for process validation are presented.

Attendees
This course is required for all employees who actively work on process sciences, process development and process validation.

Prerequisites
ESDA and DOE are recommended prior to this course.

Course Objectives
1. Design, analyze and report validation studies
2. Select appropriate analytical tools for process validation
3. Define process controls and reviews for continued process verification
4. Determine sample size for validation studies
5. Determine sources of process and material variation
6. Establish process capability and design margin
7. Report on process validation and qualification performance
8. Apply JMP to validation data analysis and reporting

Detailed Course Outline
Section I Process Qualification and Validation Introduction
 Process Validation and Drug Quality
 General Approach to Process Validation
 Statutory and Regulatory Requirements for Process Validation
 Process Validation Recommendations

Section II Stage 1: Process Design
 Building and Capturing Process Knowledge and Understanding
 Establishing a Strategy for Process Control
Section III Stage 2: Process Qualification
 Design of a Facility and Qualification of Utilities and Equipment
 Process Performance Qualification
 PAT during Qualification
 PPQ Protocol
 PPQ Protocol Execution and Report

Section IV Stage 3: Continued Process Verification
 Establishing a Monitoring Program
 Data Analysis Trending and ongoing Capability Monitoring
 Deviations/Investigations and CAPA
 Change Control
 Complaints
 CPV Data Review and Reporting

Section V Analytical Tools for Process Validation
 DOE design space
 DOE, CPP and PAR analysis
 POV and Sample Size during PV
 Process Capability and Design Margin
 Control Charts during Validation
 ANOVA and ANOM
 Equivalence Testing
Course Description and Audience:
Course is designed for Engineers, Scientists and Managers who have direct responsibility for measurement evaluation, selection, and control. Course covers the basic concepts associated with measurement systems analysis, repeatability, reproducibility, accuracy, linearity, stability, standards selection and use, calibration and compensation and measurement control.

Course Objectives:
As a result of the course the participant will be able to:
1. Determine gage capability.
2. Assess accuracy, linearity, stability, repeatability and reproducibility in test equipment.
3. Design and deploy SPC for measurement control.
4. Select and establish standards.
5. Describe proper methods for instrument calibration and compensation.
6. Conduct gage capability for inspection activities.
7. Discuss how MSA impacts customer satisfaction.

Detailed Course Outline:
Section I Introduction to MSA
MSA is a key to systematic product development
Background statistical principles
Sources of error
Focus on the measurement process

Section II Terms and Definitions
Repeatability
Reproducibility
Accuracy
Linearity
Stability

Section III R&R, Linearity, & Accuracy
2 factor crossed design for Variables MSA
Repeatability & Reproducibility
R&R and Capability Example
Accuracy example
Linearity example

Section IV Correlation, Calibration and Compensation
Correlation and compensation
Soft compensation versus standard calibration
Scatterplot Method
Problems with r^2

Section V SPC for Measurement Control
Selection and utilization of Standards
SPC for Measurement Control
SPC using stable standards
SPC using unstable standards

Section VI MSA for Attributes
Operational Definitions
Effectiveness, $P(\text{miss})$, $P(\text{false alarm})$
Kappa, escape rate and bias
Reliability Analysis

RA

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Areas of focus are distribution analysis, area under the curve estimation, hypothesis testing, life and survival estimation, thermal sensitivity, confidence intervals and multiple factor modeling. The course requires 8 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
ESDA is a recommended course prior to taking LTRA.

Course Objectives
2. Understand and apply non-parametric reliability analysis.
3. Understand and apply parametric reliability analysis.
4. Perform multivariate reliability assessment.
5. Understand and apply recurrence analysis.
6. Use Arrhenius transformations in reliability modeling.
7. Select appropriate sample sizes for MTBF studies.
8. Model reliability improvement using reliability growth models.

Detailed Course Outline
Introduction to reliability analysis and basic statistics
Nonparametric reliability analysis (Kaplan-Meier)
Parametric reliability analysis (LogNormal, Exponential, Weibull)
Competing Causes
Lifetime distribution analysis
Fit Life by X
Multivariate reliability analysis (Parametric Survival)
Recurrence analysis
MTBF analysis
Reliability growth analysis
SA

Course Description
A key component of pharmaceutical, medical device and biotechnology product development is to determine product stability and shelf life. The basic statistical assumptions, tests and life predictions methods will be presented with examples. Determination of whether to pool data, use a common slope or fit the data individually will be presented. Sample size selection and stability estimation in compliance with FDA guidance is discussed.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
ESDA is a recommended course prior to taking this course.

Course Objectives
1. Design and analyze stability studies.
2. Determine the appropriate fitting method for any stability data set.
3. Determine shelf life.
4. Select appropriate analysis technique based on type of data.
5. Use and interpret the stability script and associated report.

Detailed Course Outline
Section I Stability Definition and Introduction
FDA guidelines

Section II Stability Study Design
Sample size
Test conditions

Section III Stability Data Analysis and Life Prediction
Extendibility and Confidence Intervals
Shelf Life Determination
All batches pooled
All batches with individual fits
Common slope
Common Intercept

Section IV Stress Testing
Process Control Design Using SPC/PAT

PCDUSPC

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Course covers the basic concepts and methodologies associated with designing closed loop process controls using statistical process control for variables and attributes data. Variation assessment, subgroup formation, sample size selection, SPC control chart selection, out of control action plan generation are presented along with measures of process capability. The course requires 16 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
ESDA and DOE are recommended courses prior to taking PCD-SPC.

Course Objectives
1. Understand the language and compute the basic statistics associated with SPC.
2. Apply the ten process control requirements to achieve process control.
3. Determine rational subgroup formation, sample size and frequency.
4. Select appropriate control chart for process control requirements.
5. Compute appropriate control limits.
6. Develop appropriate SPC Charts and associated OCAPs.
7. Determine process capability.
8. Describe the roles and responsibilities for using SPC.
9. Use JMP to analyze process variation patterns, generate SPC charts and determine process capability.

Detailed Course Outline
Section I Introduction and Basic Statistics
 SPC a basis for control
 Basic statistics
 Normal distribution
 Standard error of the mean
 Central limit theorem

Section II Ten Requirements for Designing Effective Process Control
1. Clear product specifications
2. Effective metrology
3. Process characterization
4. Sampling plan
5. Control chart selection (variables and attributes)
6. Alarms, closing the loop and out-of-control action plans (OCAP)
7. Process documentation
8. Operator and engineering training
9. Database
10. Routine line audits

Section III Process Capability
- Determining process stability prior to computation of capability
 - \(Cp \) and \(Cpk \)
 - Sigma and \(z \) as measures of process capability
 - Tests for normality
 - Distribution fitting for nonnormal parameters

Section IV Process Control Implementation Roles and Responsibilities
- Management
- Process engineer
- Process control specialist
- Supervisor
- Operator
Nonlinear Modeling and Dose Response

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Areas of focus are regression and linear and nonlinear modeling. The course requires 8 hours of instruction.

Attendees
This course is required for those individuals that directly work with assay development and method validation. Further it may be helpful for those individuals that work with process characterization and generation of predictive models.

Prerequisites
Engineering Statistics and Data Analysis is recommended.

Course Objectives
1. Determine the best fit for linear models
2. Identify when nonlinear models may be appropriate
3. Select and fit nonlinear models
4. Evaluate and predict performance from nonlinear models
5. Evaluate the lack of fit from nonlinear models
6. Determine EC50 and relative potency using JMP

Detailed Course Outline
Basics of Linear Modeling
- Linear Regression
- Sniper Plots
- Fit Special

Nonlinear Models
- Nonlinear platform
- Model selection
- Model evaluation
- Adding X factors

Bio Assay and Relative Potency
- EC50
- Potency and Relative Potency
- JMP Bioassay Addin

Nonlinear DOE
Quality Risk Management and FMEA

QRM-FMEA

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. Areas of instruction covers the topics associated with risk management including risk management definitions, risk management process and risk assessment tools including Failure Modes and Effects Analysis. The course requires 16 hours of instruction.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to characterize, optimize and improve product and process performance.

Prerequisites
There are no prerequisites for this course.

Course Objectives
1. Understand the definitions, process and tools associated with Quality Risk Management
2. Identify potential design, process or test issues associated with product and performance risk
3. Understand the tools and methods for risk assessment and prioritization
4. Understand the various types of FMEAs
5. Apply the basic steps for FMEA generation
6. Know when and how to apply FMEA to product and process development
7. Prioritize and manage risk reduction opportunities from FMEA results

Detailed Course Outline
Section I Quality Risk Management Principles and Process
- Risk management principles
- Risk management process
- Responsibilities
- Risk assessment
- Risk control
- Risk communication
- Risk review

Section II Risk Analysis Tools
Basic quality tools and risk weighted analysis
Cause and effect diagrams
Process flow and risk assessment
Pareto and Risk Weighted Pareto analysis
Histograms, capability, simulation and Margin
Control charts
Regression
DOE (product and process) and MSA

Section III Technical Risk Assessment and Failure Modes and Effects Analysis

Application areas for FMEA
FMEA preparation
FMEA generation workshop

Section IV Methods for Reducing Risk

FMEA action plans and risk reduction
RCA-CAPA

Course Description
This course is specifically designed to meet the analytical needs of those individuals working within FDA regulated industries. This course is designed for those individuals working directly on product and process development and corrective/preventative action. It is assumed they come from a variety of backgrounds and disciplines and will be working on a variety of process improvement areas across the company. The course is designed for 16 hours of presentation.

Attendees
This course is required for all scientists, engineers and quality professionals who actively work on all aspects of discovery, product and process development where the goal is to understand the root cause of performance problems and implement appropriate CAPA procedures to assure the problem never occurs again.

Prerequisites
There are no prerequisites for this course.

Course Objectives
1. Identify a problem that requires action
2. Define a problem in measurable terms
3. Contain the problem while developing a durable solution
4. Measure core performance and establish metrics
5. Collect and analyze data relevant to the problem of interest
6. Analyze the system of causes and determine root cause
7. Plan and implement corrective and preventative relevant to the root cause of the problem
8. Evaluate the effectiveness of the solutions
9. Establish controls to sustain solutions
10. Use Excel or JMP for basic statistics and data analysis

Detailed Course Outline
Section I Introduction to root cause analysis
Need for improvement
Savings associated with root cause analysis
Eight+ basic quality tools

Section II Define and contain the problem
- Define the problem
- Contain the problem
- Determine scope, objectives and goals
- Project leadership and planning

Section III Measure the problem
- Map the process
- Determine data collection plan
- Establish metrics and capability

Section IV Analyze data and determine root cause
- Analyze and summarize the data
- Analyze and summarize the process map
- Determine root causes and summarize all findings

Section V Improve performance
- Brainstorming solutions and CAPA
- Benefit, cost, risk and complexity determination
- Measuring solution effectiveness

Section VI Control and standardize improvements
- Process owner
- Select controls
Harmonized QbD/Product Development and Lean Six Sigma Curriculum

The following is a summary table of the QbD curriculum harmonized with the LSS Curriculum. Additional courses may be added from the LSS curriculum if individuals are working on black belt projects.

<table>
<thead>
<tr>
<th>Days</th>
<th>Product Development and QbD Curriculum</th>
<th>Process Sciences</th>
<th>Analytical Sciences</th>
<th>Quality Assurance</th>
<th>Modular Green Belt</th>
<th>Modular Black Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>Introduction to QbD, VSIC and Critical Quality Attributes</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>1</td>
<td>Engineering Statistics and Data Analysis</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Design of Experiments</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>1</td>
<td>Mixture DOE</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Assay Development and Method Validation</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Quality Risk Management and FMEA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Root Cause Analysis and CAPA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Robust Optimization and Tolerance Design</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Analytical Methods for Process Validation</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Stability and Degradation Analysis</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>2</td>
<td>Process Control Design using SPC</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
<tr>
<td>1</td>
<td>Nonlinear Modeling (Dose Response, Relative Potency)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Modular Green Belt</td>
<td>Modular Black Belt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Total</th>
<th>Modular Green Belt</th>
<th>Modular Black Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>18.5</td>
<td>18.5</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Certified QbD Practitioner, examination and demonstrated development application

One Project Two Projects

THOMAS A. LITTLE
CONSULTING

12401 North Wildflower Lane
Highland, UT 84003
1-924-285-1847
drlittle@dr-tom.com
Website: www.dr-tom.com